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ABSTRACT

When students are working together solving a Java programming problem, can a 
computer gauge how often they show understanding? In the COMPS project, 
students in small groups engage in typed-chat problem-solving dialogues. This 
project applies topic modeling and text analytics toward computer assessment of the 
degree to which students are constructively discussing the problem. The aim is to 
provide a real-time assessment of the state of the conversation to an instructor 
overseeing the online conversations. Here we report on training machine classifiers 
to recognize parts of the dialogue where the students are reasoning about the Java 
problems. 

INTRODUCTION

In COMPS exercises students work in small groups during their class lab time, 
solving exercises through typed-chat [4,5]. The instructors figuratively look over the 
shoulders of the students as they work, contributing to the typed-chat conversations 
when they think it will be useful. Students work in groups of three typically, a whole 
class has many groups for the instructors to check on. An example of such dialogue 
is shown in Figure 1. 

This paper reports on work toward providing the instructors with a dashboard. 
The COMPS chat interface was designed by us for computer-supported collaborative 
instruction. Computer-monitoring will show the instructor indications of the state of 
each conversation. The dashboard indicator at the focus of this research will reflect 
whether student utterances show evidence they are discussing the topic. This paper 
explores the machine learning techniques to detect several aspects of the 
conversation that could, together, show discussion behavior:

a) The students are talking about the topic.

b) The students are agreeing or disagreeing with each other.



The intuition is that productive dialogues will contain both phenomena. For 
example, if the students are talking about the topic but not expressing agreement or 
disagreement, then possibly they are not addressing each other or engaging with 
each other’s ideas.

The main method is to use text analytic techniques to identify these phenomena 
in individual student dialogue turns. Turns are machine-classified as containing the 
behavior or not. For the dashboard, a statistic will be derived based on the 
frequency of these two behaviors. Machine-identifying these behaviors in individual 
turns does not need high accuracy. For monitoring the state of the conversation, 
even a somewhat unreliable classifier could still provide enough correct data to tell 
the instructor which of the conversations are most in need of attention.

To train the machine classifier about 3000 lines of dialogue from 19 discussion 
groups were manually annotated as showing or not showing reasoning and 
agreement. Topic modeling was applied to the dialogues, discovering sets of related 
words that tended to occur together within the same turns. Each student utterance 
is then modeled as containing a mixture of the possible topics. Finally, machine 
classifiers were trained to try to predict the occurrence of the reasoning feature, 
based on the mixture of topics each turn was discovered to obtain.

The sections of this paper are: a description of the data and its annotation, a 
description of the text analytics process, the experimental results of classification 
tasks, and discussion and future work.

DIALOGUE DATA 

Figure 1 contains an extract from a COMPS dialogue, extracted from the chat log 
file. Table 1 shows statistics on the dialogue turns used for this experiment.

In the Figure 1 dialogue, the students are answering questions about how to 
declare a Java method. The code and questions are visible to the students in a 
separate document outside the chat window. Three students labeled here A, B, and C 
are participating, as is a teaching assistant labeled TA. Their instructions are to come 
to agreement on small sub-problems, then have the TA judge their answers and 
possibly provide help. In addition to the dialogue text, Figure 1 shows “reason” and 
“agree” features. These were manually annotated.

The “reason” feature shows whether the turn evinced reasoning or 
understanding in the Java problem. It is marked “Y” or “N” for yes or no. Reasoning 
was shown if the student a) talked about constructs from Java or the program, and 
b) utilized some sort of reasoning. Saying “I understand” fails that test. So does 
simply saying some Java code, as in turn 14. The correctness of the student’s 
statement and reasoning are not part of this judgment, it is enough that the student 
was talking about the material of the problem. 

As a check on the manual annotation, the first 1000 ‘enter’-delimited chat turns 
were hand-annotated by two other people. Inter-rater agreement, measured by the 
kappa statistic [1], is kappa=0.47 for the reasoning annotation.



Turn Stu Dialogue Text Reason Agree

1-2 A do this one work?   Y --

public double calculatePayment(double 
principleAmount, double interestRate, double 
totalCurrentMortgages)

3 B should t be void? N Dis

4 TA Hm make sure you guys agree first and Ill come 
back in a sec

5 C no becuase void is if you are not returning a value Y Dis

6-7 B yea i know.. So to my understanding we are 
returning something. 

Y --

Ok i understand now

8 C I think what [student A] has works because it 
calls everything thta we are looking for

Y Agr

9 A wait we are not instanting a Morgage object 
correct, so doesn't that mean it's a no-arg 
constructor?

Y Dis

10-12 B See I was thinking about that. Y Agr

but it does have parameters 

lets try your original answer, agree?

13 C agree N Agr

14 B public double calculatePayment(double 
principleAmount, double interestRate, double 
totalCurrentMortgages) {} @TA

N --

15 TA Ok you need one more modifier so it can be 
accessed without instanting the Mortgage class 
*instantiating

Figure 1: Transcript of Discussion with Manually-Annotated Features

The “agree” feature is notated “Agr” here if the student shows evidence of 
agreeing with a previous student’s utterance, “Dis” for disagreeing, and “--” if neither 
is shown. Notice that the word “agree” in the dialogue is not always an indication of 
agreement. In turn 13 the student agrees with another. By contrast in turn 4 the TA 
tells the students to come to agreement, and in turn 12 student B is seeking 
agreement. Agreement and disagreement were annotated by hand separately as 
binary present/not-present features, but they are presented here as a single three-
valued feature. 



In the chat interface, students end turns by pressing ‘enter.’ In normal verbal 
conversation, several sentences in a row by one person are considered a single 
dialogue turn. Therefore when consecutive chat-turns are by the same person they 
are concatenated together and treated as a single dialogue turn. Turns 1 and 2, for 
example, were from the same student. They were annotated as providing reasoning 
because turn 1 contained some words that occur as part of reasoning and turn 2 
contains Java. The COMPS chat interface permits students to overlap their typed 
responses to each other [4]. To sequence chat turns into a chronologically linear 
conversation, they were ordered by the timestamp of the ‘enter’ which ended a turn.

Table 1: Statistics of Dialogue Data

Number of enter-delimited chat-turns 3497

Number of dialogue turns (combining consecutive 
chat-turns from one person)

2394

Number of reasoning turns 888

Percent reasoning turns 37%

Number of dialogues 19

Average turns per dialogue 126

Average reasoning turns per dialogue 47

 TEXT ANALYTICS PIPELINE

The main steps in the text analytics pipeline are: removing proper nouns and 
similar named entities, building a topic model from part of the transcript, applying 
the model to the whole transcript, identifying additional text features, and training 
and testing classifiers.

Topic Modeling

The primary text analysis method used in this experiment is topic modeling [6]. 
Texts (in this case, the dialogue turns) are converted to bags of words. A topic is a 
collection of words that likely occur together within the same dialogue turn. The 
experimenter specifies the number of topics to be included in the model. Based on 
training texts, the algorithm builds a probability distribution, where each word wi is 
assigned a probability that it occurs within topic tj. After a topic model is built, new 
dialogue turns can be analyzed according to the topics they contain. Every dialogue turn 
is assigned a vector of real-valued numbers in the range [0.0, 1.0] representing the 
participation of each topic within that turn. 

Figure 2 shows three of the topics that the model discovered in the COMPS 
dialogues. The parentheses show the number of times each word occurs within each topic 
in the training data. In Figure 2 the topic names, e.g. “agreement and disagreement,” were 
added manually for illustration. The topic model is constructed without supervision and 



without reference to the meanings of the words. Nevertheless many topics that the model 
produces comprise recognizable semantic concepts.

Topic 1:
Agreement and Disagreement

Topic 2:
Java Language

Topic 3:
The Program Under  

Discussion

answer (51), correct (38),
yeah (30), yea (26), part (25),

agree (23), move (18),
makes (14), wrong (14),
problem (12), cool (12),

explanation (11), sense (11)

private (119),
double (86),

data (81), type(74),
int (40),

modifier (38)

rate (31), amount (27), 
interest (25), principal (23),

variable (16), total (16),
number (16), current (15),

class (15), double (15),
parameters (14)

Figure 2: Three Prominent Topics Produced by Topic Modeling of the COMPS Dialogues

We implemented our topic models using MALLET, a Java library [6] and 
replicated some of the results with gensim, a Python library [7]. For both libraries 
the topic modeling algorithm is rooted in Latent Dirichlet Allocation (LDA), a generative 
probabilistic model for collections of discrete data often applied to text analysis. 

Named Entity Elimination

In the dialogues students often refer to people by name. For example in Figure 1 turn 
8 one student addresses another. User names and other proper nouns are not relevant to 
the topic. Stanford’s CoreNLP Named Entity Recognition library [2] was used to remove 
proper nouns from the text before subjecting it to topic modeling.

Additional Text Features

In addition to the topic models, a small number of other features in each dialogue 
turn were annotated by computer for use by classifier models [3]. These are:

a) Participation, a statistic based on the fraction of the conversational turns 
uttered so far that came from this person. Participation is adjusted according to 
the total number of people in the conversation, if everybody is participating 
equally the statistic is 0.5 for each person.

b) Discourse marker words at the beginning of a turn, such as “so” or 
“therefore,” which may be indicative of reasoning. This is a 0 or 1 binary feature.

c) Question marks, emoticons, and pronouns such as “you,” “we,” or “us.” These 
are also binary features taking the value 0 or 1. The presence of these items in a 
dialogue turn usually indicate that the speaker is conversationally addressing 
another person.

Classifiers



Weka (Java) and Scikit-Learn (Python) were used for training and testing classifiers. 
Trained classifiers can be saved for repeated use in testing on new data, and for eventual 
incorporation into the COMPS dashboard. This project tested J48 decision tree classifiers 
from Weka and Scikit, multiple linear regression from Scikit, and LogitBoost linear 
regression from Weka. 

EXPERIMENTAL RESULTS

We trained decision tree and linear regression classifiers for the “reason” 
feature. The classifiers utilized only topic model, or the topic model augmented by 
the additional text features listed above. For the regression models the class 
variables were coded as numeric 0 or 1. The discrimination cutoff value for the 
regression results (the value of the regression result that was used to discriminate 
between the two cases) was picked to maximize F1 value. For the decision tree 
models we specified a minimum of 10 items per leaf node in the tree. 

We tested with differing numbers of topics (number of clusters the topic 
modeler is set to generate) of 10, 20, 70 and 100 topics. Generally 10 topics worked 
best, thus the primary results we report used 10 topics.

Table 2 shows the results of testing J48 decision tree classifiers and linear 
regression classifiers, using a 10-topic model. Results are reported for classifiers 
that used the topic values only, and for the topics plus the other features. Table 3 
shows the results for topics-only classifiers using larger topic models. The 10 topic 
classifiers were trained on 80% of the data and tested on the remainder, using 5-fold 
cross validation. The results for more than 10 topic classifiers were reported from 
training on a random 70% of the data and testing on the remaining 30%.

Table 2. Best Decision Tree and Regression Classifiers, Using 10 Topic Model

Other 
Feat?

J48 Decision Tree Linear Regression

Precision Recall F1 Precision Recall F1 ROC-AUC

No 0.749 0.815 0.78 0.448 0.806 0.58 0.725

Yes 0.771 0.821 0.79 0.533 0.656 0.59 0.756

Table 3. Best Classifiers using More Than 10 Topic Models

J48 Decision Tree LogitBoost Linear Regression

No.
Topics

Precision Recall F1 Precision Recall F1

20 0.730 0.332 0.46 0.675 0.451 0.54

70 0.667 0.354 0.46 0.704 0.430 0.53

100 0.685 0.354 0.47 0.592 0.523 0.56



The primary results are: A) F1 values of 0.6 to 0.75 are achievable, B) modeling 
10 topics is better than modeling larger numbers of topics, and C) adding the 
additional non-topic features provides very little improvement. 

DISCUSSION AND FUTURE WORK

For a statistic for an instructor dashboard, F1 scores in the range of 0.6 to 0.75 
might be adequate. Over half of the reasoning turns would be correctly identified by 
the classifiers tested above. With 47 reasoning turns per dialogue, this accuracy 
might sufficiently detect dialogues that are abnormally high or low in reasoning 
turns. The low interrater reliability between human annotaters hints that there may 
be little room for improvement in classifier accuracy given our current training 
dataset. 

Providing more text to the classifier is potentially more accurate than classifying 
individual turns, many of which are quite short. A possible variation on the text 
processing would be to apply the classifiers to sliding windows in the text stream, 
for example the most recent hundred words taken from all speakers. 

Manual inspection of the topic models, as in Figure 2, shows that they often 
seem to identify agreement and disagreement as a topic. This suggests that the same 
approach may be fruitful for the next task of identifying agreement/disagreement 
phenomena within a conversation.

A concern is that the topic models in this experiment contain many words that 
are specific to the problem domain. The dialogues in this study all came from a 
discussion of classes, objects, and reference types. A different Java exercise would 
contain a different mixture of Java concepts and vocabulary. A classifier model that is 
problem-independent would have considerably greater utility. There is evidence 
that a domain-independent judgment of student reasoning may be possible. Other 
experimenters, e.g., have gauged student understanding in tutoring dialogue, 
utilizing only domain-independent indications of student affect [8]. Another set of 
experiments is thus underway to apply topic modeling and train classifiers using 
only common English words, optionally augmented by a general Java concept 
vocabulary. Another experiment will be training on bigrams in addition to the 
individual words. This may create models sensitive to short phrases that are 
indicative of reasoning. For example, in the Figure 1 dialogue such bigrams include 
“let’s try” and “you need.” 
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