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ABSTRACT

This paper describes people chatting at the same time in COMPS group
collaborative exercises. Simultaneous typed-chat, students seeing others'
typing in real time, is a feature of COMPS. In verbal interaction cooperative
dialogue requires turn-taking. People cannot talk simultaneously except for
fractions of a second and still conduct dialogue. This paper documents
qualitatively that simultaneous chat is happening in the keyboard domain, that
students are interactively responding to each other, and that collaborative
behaviors occur in this context. COMPS also will incorporate computer
recognition of the degree of interactive behavior. This paper also shows
evidence that conventionally extracted dialogue turns and features that are
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used for training text classifiers do not work when applied to simultaneous
chat.

INTRODUCTION

The goal of the COMPS (Computer-Mediated Problem Solving) project is to provide
a computer-aided instrument for collaborative learning of concepts through
problem-solving dialogue [1, 3, 6]. An unusual feature of the COMPS online chat
environment is that students type simultaneously. They can see each other's comments
as they are typed in real time. This adds an interactive dimension that even spoken
language does not support, since students can both type and read without interrupting
each other. This paper reports on students who are keyboard-chatting with each other in
two different tasks in two different classroom contexts.

The theoretical benefits of computer-mediated collaborative chat hinge on
interactivity, on students responding to each other. Most forms of human dialogue require
that people take turns as they talk. One goal of this paper is to illustrate that when using
a keyboard (as opposed to talking verbally) everybody chatting at the same time occurs
in real conversations and is compatible with collaborative discourse.

Future goals of COMPS include machine monitoring of the conversations. This
includes training computer models to measure a) whether an individual dialogue turn is
responding to another turn by a different student, and b) the degree to which a
conversation is interactive. In prior work this project annotated the interactivity of the
dialogues. It also trained classifiers to measure whether students are addressing each
other. These efforts were not very successful. However these efforts did not succeed in
taking into account the simultaneity of student typing [2].

This paper reports on evidence that students are using this full-duplex chat ability
in productive ways. It also illustrates how overlapping chat can make it difficult to
identify turns that respond to other turns.

THEORETICAL BACKGROUND
Conceptual Knowledge and Dialogue Interactivity

COMPS collaborative problem-solving exercises are designed to address student
conceptual knowledge via group work. COMPS exercises have been deployed in two
different quantitative literacy exercises for pre-service teachers and in two different
object-oriented Java concept exercises in CS2 classes.

The student skills are what Skemp [8] calls “relational understanding,” a
complement to the instrumental skills that are the bread and butter of elementary
programming and mathematics classes. COMPS exercises, such as this one, are focused
on learning things that are hard to measure. This orientation guides the construction of
our exercises, in particular having students come to shared agreement, telling them the
answers, and having them reconcile their understanding with the given answers.

There is research showing that collaborative activity is a desirable pedagogical
approach specifically for creating conceptual understanding [ 11]. The Virtual Math Team
dialogues illustrate the group cognition behaviors [9] and knowledge co-construction
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activities [12] underlying this success. In group cognition, the individual bits of
knowledge construction can be observed in different participants. They work together to
build knowledge. COMPS has also observed group metacognition, where one student
regulates the task by posing questions and check answers for plausibility while other
students perform the knowledge construction. Key to engendering learning is dialogue
that engages in domain reasoning, such as explaining, negotiating, or inferring. Justifying,
arguing, and similar knowledge-engendering dialogue moves were also notable in the
Virtual Math Team dialogues.

These conversational theories presuppose that students are responding to each
others' utterances. Whether students can and do respond to each other while all typing
simultaneously is a question that has not been well studied. The definitive studies of
students engaging in typed communication, e.g. [5], do not consider this case.

Measuring Interactivity

Accordingly, one goal of this project has been to measure how frequently students
respond to each other. For this purpose this project has used an interactivity index,
defined as the percentage of on-task turns that respond to other turns [4, 2].

The linguistic discipline of Conversation Analysis (CA) divides dialogue turns into
three types: initiate (I), respond (R), and sometimes follow-up (F). CA then identifies
exchanges, segments of dialogue that start with I turns [10]. However exchange structure
analysis proves to be difficult for dialogues with more than two people. In COMPS
conversations a single statement might elicit several responses from different participants.
Persons C (turn i + 2) and B (i + 1) can both respond to A (turn 1). Also B can respond
to A, and then C can respond to B, creating a chain of responses. Furthermore, these two
cases may not be distinguishable. The follow-up category is similarly hard to distinguish:
C's follow-up to B might look like a response to A. Thus when analyzing dialogues, this
project's method is simply to mark R for a turn that responds to the most recent turn of
any of the other people. Otherwise it is an I turn. Dialogue turns that are not related to the
task are excluded, these are largely the greetings and leave-takings at the beginning and
end.

CA exchange structure analysis has proven to have another difficulty: it relies on
people taking turns. In COMPS overlapping utterances are common.

EXPERIMENT

The transcripts reported on in this paper came from two different contexts. Context
A was a Java reasoning problem in a second semester programming class at North
Carolina A&T State University, a public HBCU. Context B was a logical and
mathematical reasoning problem in a class for pre-service teachers at Valparaiso
University, a private sectarian institution. In both cases the exercises are administered
during a lab period. Students logged in to the COMPS web page and communicated via
typed-chat with the other members of their group. By protocol, the members of each
group were seated apart from each other in the classroom, they did not interact verbally.
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For the Java exercise, each student received a picture of a GUI with its components
numbered. This was accompanied by a list of questions. The nature of the task was to
understand and articulate the Java software structure that necessarily lay behind the
interface they were seeing. For example, they needed to decide which of the visible
components could be anonymous in the code, which event listeners must be present in
order to support the desired behaviors, and what is the visibility of instance variables in
certain Java classes. The questions exercise their ability to understand both the principles
of Java classes and the particular ideas behind Java Swing. The exercise had five multiple
choice questions. The exercise protocol was as follows. The students were in three person
groups. They were instructed to come to an agreement on answers to one or more of the
questions. One student would take the answer to the professor for feedback in person, and
then return to the group to finish the discussion. This process continued for each problem
until all problems were understood by all members of the group.

For the logical reasoning exercise, the students were required to discover whether
there is a winning strategy for the game of Poison. It is a Nim-like game where players
alternate removing 1 or 2 stones from a pile. The player with the last stone loses. The web
page supported playing the game online during the chat. The students were typically in
four person groups. They were instructed to divide into two teams for playing purposes.
They were to chat and play until the answer had been worked out and understood by all
members of the group, then agree on what would go into a written description of the
answer that one member was charged with writing afterward. In this exercise the
professor was logged into the conversations, intervening when it appeared that help
would be useful.

Java Poison
# Sessions 17 5
Dialogue Turns 1790 1088
Mean turns/session 107 218
Mean duration 50 min 72 min
Min duration 26 68 min
Max duration 67 77 min
% of turns overlapping 47% 50%

Table 1. Statistics on dialogues

Statistics on the dialogues are in Table 1. Simultaneous chat was prevalent in these
dialogues. Roughly half ofall dialogue turns occur while other turns were in progress. We
count a turn as in progress from the moment of the first keystroke until the enter-key at
the end. We make an exception for long pauses in the middle of a turn. The other students
can see what has been typed already, so effectively they are not interrupting if they type
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after the first student has paused. In order to filter out overlapping with paused turns,
keystrokes from the two overlapping turns must occur within 10 seconds of each other
in order to be counted.

The Java dialogues were hand-annotated by a team of three students for I (initiate)
and R (respond). Each dialogue turn that was not marked as I or R was excluded. The
result was 1790 annotated turns. A set of Poison dialogues were likewise coded, but have
not been used for machine learning.

ILLUSTRATIONS OF SIMULTANEOUS DIALOGUE

This section illustrates what simultaneous chat looks like, and shows that it is
possible for students to keyboard-chat and still engage with each other simultaneously.

Figure 1 from the Poison dialogues illustrates a common case, where student B does
not wait for student A to finish before challenging a statement. In this example, B can be
seen as possibly providing a metacognitive plausibility check on A's proposed partial
answer, claiming that the proposed answer is not consistent with the problem statement.

St | Text Start - End
mm:ss
A | So part of the strategy to win could 42:54 - 43:42

be going second, so that

you can always match
what the other person
picks, right?

B We need to find a way 43:30 - 43:41
that you always win,
whether you go first or
second.

Figure 1. Overlapping with a Correction

Figure 2 illustrates an extreme example of overlapped Java dialogue. Student B's
question happens entirely within the middle of A's utterance, and A answers B's question
without pausing. In this exchange, A can be seen as extending the turn to accommodate
the question that B raised while A was still typing. It is also an example of how students
can respond to each other while chatting simultaneously, something that will not likely
happen in verbal conversation.

A Labels 1, 2, 3, 4, 5,

and 14 can be instantiated anonymously. Because
these do not have to be
changed
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B What about 6 and 7?

Figure 2. Student A Responding to Student B in Mid-Turn

Sometimes students engage in sequences of turn-taking dialogue, but they start
typing early without waiting for the previous turn to finish. Figure 3 shows an example
from the Poison dialogues.

Figure 4 illustrates three students typing simultaneously during the turns marked 2,
3, and 4. The first turn is the ending sentence of a putative answer to the question. At turn
2, A starts to explain. In the middle of the explanation B provides an elaboration on A's
explanation. Then C expresses agreement. During turns 2, 3, and 4 all three engage in
aspects of the knowledge-building activity while typing simultaneously.

A So long as you do that,
you'll hit
all our magic numbers and win.

B But in the last
game i started
with taking 2 and  still won.

A You won the game
when you had 18
because....

Figure 3. Serial Interruption

St | Text Start - End
mm:ss

1 | A | loan amount, 19:11 -
interest rate, num 19:23
years... etc.

2 | B | well; they're the 19:26 -
only ones that 21:22
change

the others can  stay the same throughout the whole
program
3|B that makes sense since they are the | 20:36 -
only two that arent going to be input | 21:01
by the user
4 |C 1 think u are right | 20:56 -
21:12

Figure 4. Three Students Chatting Simultaneously
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The next example, Figure 5, illustrates the difficulty that overlapping dialogue
presents when trying to classify turns as I or R. Recall that for a turn to be classified as
R, there is an antecedent turn which is the most recent turn of another person. The
utterances of this dialogue are schematically like this. The turns have been marked with
lTorR:

Turn 1 (I) A proposes possible answer letter (option E)
Turn 3 (R) B proposes alternate answer letters

Turn 4 (R) C proposes yet other answer letters

Turn 2 (I) A explains the proposed answer in turn 1
Turn 5 (R) B acknowledges A's explanation

However Figure 5 is fundamentally different than some of the previous illustrations. The
turn numbers appear to be out of order. The turns were numbered from a transcript where
the turns were printed in order of start time.

How do we know the end-time ordering is correct and start-time ordering is
incorrect in this case? We know this from the semantics of their statements. Student A
proposed some letter choices (turn 1), B and C proposed alternate choices (turns 3 and
4). Similarly, B's acknowledgment in turn 5 is coherent only as a response to A's
explanation, which was in turn 2.

For the annotator, simultaneous typing made this into a mess. Recall that a response
turn should address the most recent turn from the other student.

* While A was typing turn 2, B and C started responding to A's earlier turn 1. It was
not possible to correctly annotate 3 and 4 as responses to turn 1, because turn 1 is
no longer the most recent turn by A.

e Turn 5 by B responds to turn 2 by A. Again, correctly annotating turn 5 is a
problem because of the intervening turn by B.

On the other hand, the exchanges in Figures 1, 3, and 4 are correctly interpreted only
if ordered by start time, while in Figure 2 each turn contains parts that respond to the
other. We have not found a mechanical way to reliably order the transcripts so each R
turn follows its antecedent 1.

Turn | I/R | St | Text Start - End
hh:mm
1 I A | On number 2 I believe its E 31:55-32:05
3 R B | for number two I say A, B, D, E 32:18 - 32:36
4 R C [ Ithinkits ABand D 32:32 - 32:42
2 I A | because ActionListener Only operates on a 32:06 - 32:49
text field when enter button is pressed
5 R B | ohtrue 33:09 - 33:11

Figure 5. End-Time Ordering for Correct /R Annotation
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PRIOR RESULTS

Toward the goal of developing COMPS computer chat monitoring, two goals were
to train models to measure overall interactivity and classify individual turns as I or R.
Experiments for these purposes were conducted using the approximately 1800 turns of
manually-annotated Java task transcripts.

Interactivity was defined as percentage of R turns: R / (I+R). In the coded Java
dialogues, the most interactive of the 17 sessions had interactivity of 72%, the mode was
64%, and the minimum was 49%. Overall 65% of dialogue turns are annotated as
responding to other turns [2].

Features were machine-extracted from the dialogue turns for the purpose of training
an I/R classifier. Examples of features that might pertain especially to interactivity
included question marks (eliciting a response from another student), emoticons, and
pronouns “you,” “we,” and “us” (indicating joint activity). Examples of features that
pertain to knowledge construction included discourse marker words such as “now” and
“s0” at the beginnings of turns (which are indicative of the occurrence of reasoning),
references pointing to items on the GUI interface (deixis), and words from the problem
domain. Other features were typical of text mining tasks, e.g. length of turn and the
individual higher-frequency words [2].

» Using several algorithms, successfully training a classifier to identify I and R turns
based on these features proved elusive. The best classifier was a J48 decision tree.
Kappa agreement between the best classifier and human annotators was 0.27.

» Linear models predicting the interactivity index of a session based on the prevalence
of the features were not successful.

Hand examination of some of the classification failures revealed to us that many of the
errors seemed to be associated with simultaneous chat [2].

DISCUSSION AND CONCLUSIONS

Group cognition is in evidence in COMPS dialogues. All the examples in this paper
illustrate group cognition, where each student is contributing to epistemic knowledge
construction. Furthermore, everybody chatting at once does not seem to be incompatible
with group interaction. Figure 1 through 3 show two students interacting constructively
while typing simultaneously, while Figures 4 and 5 illustrate the same with three students
all typing at the same time. Most of our groups have three or four people.

Regarding manual annotation of turns as I or R, re-examination of our transcripts
shows that the overlap between turns should not have been ignored. The annotators
worked from transcripts that had been linearly ordered by end time. Start time seems to
more frequently produce a sensible linear ordering in both the Java and Poison
transcripts. However as the example in Figure 5 shows, start-time ordering is also not
always correct. Examining this example is instructive because it appears that determining
the antecedent of a response is partly semantic. Turns 3 and 4 can be seen to be responses
to turn 1 because semantically, all three are proposing multiple choice answer letters.
Given the timing of the students typing, with turns 3 and 4 interrupting turn 2, it would
have been entirely possible for the antecedent to have been turn 2. How to display
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simultaneous-chat transcripts so that they may be reliably hand-annotated for I and R is
an open question. Rosé's experiments in classifying transactivity [7] (a transactive
dialogue turn is responsive to an earlier turn and contributes to knowledge-building)
utilized latent semantic analysis comparison between pairs of turns as one of the
machine-derived features. It is conceivable that COMPS should do likewise.

It is also not clear how to derive features for machine learning that capture the
aspects of simultaneous chat. One feature is the number of keystrokes in a turn that were
typed while other turns were in progress. This feature was virtually unused by the
decision tree classifiers and did not figure into any of the interactivity regression
equations.

Between two utterances of two students A and B, with time stamps Astart, Aend,
Bstart, and Bend, there are four timing differences. Bstart - Aend is the usual gap between
two successive conversational turns: after A ended, how long B waited to start. It is
negative if B interrupted A. When attempting to classify [ and R turns, classifier features
included all four differences between the two students' utterance. For example Bstart -
Astart is how long B waited after A started before jumping in. In the decision tree
classifier experiments, the most prominent features were the gaps between two turns, e.g.
a long positive gap was indicative of a new I turn. But the negative numbers that indicate
interruptions were hardly predictive.

The summary conclusion is that students know how to chat simultaneously and still
work productively, but successfully capturing the simultaneity in features for machine
learning remains future work.
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